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A C T I O N  OF A R O T A T I N G  M A G N E T I C  FIELD 

ON A D I E L E C T R I C  C Y L I N D E R  I M M E R S E D  

IN A M A G N E T I C  F L U I D  

A. F. Pshenichnikov and A. V. L e b e d e v  UDC 537.84 

1. I n t r o d u c t i o n .  It is known [1-5] that in a magnetic fluid in a variable magnetic field tangential 
stresses occur which are due to the finite relaxation time of magnetization and its spatial nonuniformity. 
At the fluid boundary, magnetization undergoes a jump and the tangential stresses reach maximum values. 
Under these stresses the free boundary comes into motion, carrying along adjacent fluid layers and forming 
circulation hydrodynamic flow (rotational effect). Although this effect was observed experimentally as early 
as in 1967 [6], its quantitative description remains unsatisfactory. 

The first attempts to calculate magnetic tangential flow at the boundary of an isothermic fluid were 
made by Tsebers et al. [1, 2] for Couette flow in the clearance between two coaxial cylinders and by Vislovich 
[7] for a plane layer. The calculation was performed in a uniform magnetic field approximation. This limits 
the range of applicability of the solution to weakly magnetic dilute solutions, and the presence of microscopic 
parameters related to individual colloidal particles allows one to estimate only the order of magnitude of the 
flow velocity. Lebedev et al. [3, 5] solved the problem using the equations of ferrohydrodynamics from [8-10], 
allowing for the spatial nonuniformity of magnetization and of the field and ignoring microscopic parameters. 
Such an approach allowed a more correct comparison of calculated and experimental data to be made, but 
the causes of the two- or threefold difference between the theory and experiment remain unclear. 

The present work analyzes these causes of the differences, presents a more correct solution of the 
problem of coaxial cylinders, and gives new experimental data. The chosen geometry of the problem is 
convenient for both theoretical analysis and experimental studies. In particular, experiments with a free 
and elastically fixed inner cylinder allow one to determine the flow velocity and estimate the influence of a 
moving boundary on the hydrodynamics of a magnetic fluid. 

2. Fo rm u la t i on  of  t h e  P r o b l e m .  Let a dielectric magnetic fluid fill the clearance between two 
vertical coaxial cylinders whose length is large in comparison with their diameters. The magnetization of both 
cylinders is thought to be negligible in comparison with the liquid magnetization. The outer magnetic field is 
uniform at a distance from the cylinders, is oriented perpendicular to their axis, and rotates in a horizontal 
plane with an angular velocity w. The problem consists in finding the moment of the forces acting on the inner 
cylinder, and also the amplitude and profile of the hydrodynamic flow. The solution is based on the equations 
of ferrohydrodynamics [8-10], including an equation of motion that allows for nonequilibrium magnetization, 
the Maxwell equations for a magnetic field, and a relaxation equation for magnetization. 

Here we restrict ourselves to the case of weak fields. This makes it possible to linearize the relaxation 
equation, to ignore the internal heat sources associated with energy dissipation of the rotating field, and to 
consider the flow slow and stationary. The system of ferrohydrodynamic equations subject to these conditions 
can be written as 

- V p  + r/Av + #o [(MV)H + ~rot  (M x H)] = 0; (2.1) 
1 

rot H = 0, div B = 0, B = #0(H + M); (2.2) 
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OM | 
= - -L(M-  x0H); (2.3) 

0t r 

div v ---- 0. (2.4) 

Here v is the flow velocity; M is the fluid magnetization; H and B are the intensity and induction of the 
field;/~0 = 47r �9 10 -7 H/m;  X0 is the equilibrium susceptibility; and r is the relaxation time of the magnetic 
moment of a particle. Relaxation equation (2.3) takes into account the fact that  the flow vorticity is small 
in comparison with the field-rotation frequency. The term with rot v is therefore absent from the right-hand 
side of Eq. (2.3). The low-vorticity condition is well satisfied in practice, which allows the magnetic part of 
the problem to be solved independently from the hydrodynamic part. 

The boundary conditions for the velocity are conventional. In the cylindrical coordinates r and T, they 
take the form 

v=FIR1 at r = R 1 ,  v = 0  at r = R 2  (2.5) 

(R1 and R2 are the radii of the inner and outer cylinders, respectively, and fl is the angular rotation velocity 
of the inner cylinder). The  outer cylinder is immobile. According to [8], the tangential stresses in the magnetic 
fluid are determined by the tensor 

aik = '7 \ Oxk + Oxi,] + HiBk + Mkni). 

This expression and the fact that  the normal induction component  and the tangential component of field 
intensity are continuous at the fluid boundary allow one to write the boundary condition for tangential 
stresses (at r = R1 and R2) in the form 

o'ik = "~'(UiHk - MkHi) + ,7 \ Ozl, + Ozi ) ' (2.6) 

where a~k is the mechanical stress in the cylinder wall. In particular, if the inner cylinder is free to rotate 
(u[k = 0), condition (2.6) determines the amplitude of hydrodynamic flow. 

3. S o l u t i o n  of  t h e  P r o b l e m  a n d  Ana lys i s  of  t h e  R e s u l t s ;  First, note an important feature of 
the weak-field approximation: the volume magnetic forces in a homogeneous fluid have a gradient form [3, 9]. 
Indeed, using the Maxwell equation (2.2) and the vector identities in [11], we find 

F = ~0 ( M ) H  + ~ rot (M x H) = - -  [V(M.  H) - H x rot M + (H + M) div HI.  

On the other hand, it follows from (2.2) and (2.3) with uniform X0 and r (the fluid is isothermic) that 
div H = 0 and rot M = 0. Thus, the volume magnetic forces lead only to pressure renormalization. Only the 
tangential magnetic stresses on the mobile boundary can be a source of stationary motion. 

Bearing the above remark in mind, we find a simple Couette flow profile from Eqs. (2.1) and (2.4) and 
no-slip condition (2.5): 

v(,-) = an (n  - ,.5) (3.1) 

where v(r) is the azimuthal velocity component; f~ is determined from condition (2.6). The problem is thus 
reduced to calculating the fields t t  and M inside the fluid. 

In the case of long coaxial cylinders, Maxwell equations (2.2) and relaxation equation (2.3) admit a 
simple solution. In a coordinate system that  rotates with the field, it takes the form 

C2 sin(~o + fl), Hr = C, cosqo - C2r 2 cos(qo +/~), H~ = -Clsinqo - ~- (3.2) 

[ ] [ c2 sin(: 6)] Mr = X Cxcos(c2 + 6) - ~ cos(q0 + fl + 6) M~ = - X  C, sin(~ + 6) + ~ -  F2 

Here tan 6 = X2/X1; X is the dynamic susceptibility modulus. The real part Xl and the imaginary part X2 of 
the dynamic susceptibility are described by the Debye formulas 

Xx = Xo/(1 + w2r2), X2 = Xowr/(1 + ~,'2r2). 
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The constants B, Cl, and C2 are found from the boundary conditions for the intensity H and induction B. 
Skipping, for the sake of brevity, awkward intermediate calculations, we write the result: 

C, C2 2H0 
= tan ~ = 2X2/(X 2 + 2X,). (3.3) 

 4+4x,+x  - xR, 4 + 4x, ' 

The solution for the outer region is similar in structure to (3.2), but with different constants and phases. The 
field inside the inner cylinder is uniform. 

It is pertinent to note that actual ferrocolloids are essentially polydispersed, and that each particle 
fraction is characterized by its own relaxation time of the magnetic moment. The time spectrum is usually very 
wide (several orders [12]). For this reason, it is necessary to write an individual relaxation equation for each 
fraction of particles. But if we do this and add up the contributions of different fractions to magnetization, we 
will again come to Eqs. (3.2), with the only difference that X1 and X2 are no longer described by the Debye 
equations and a relaxation time distribution function should be defined to calculate them. This, however, 
involves no difficulties, since the procedure of measuring dynamic susceptibility is well developed and there is 
no need for calculation of Xl and X2. 

Substitution of (3.1)-(3.3) into (2.6) at a~k = 0 yields 

fl = g(1  - R~/P~)/4rl; (3.4) 

16#0X2(1 + x,)Ho 2 (3.5) 
K = (4 + 4XI + X 2 - X2R2/P~) 2" 

Here K is the specific (per volume unit) moment of the magnetic forces acting on the inner cylinder. The 
minus sign on the right-hand side of (3.5) means that this moment is opposite in direction to the rotation of 
the outer field. The inner cylinder is also counterrotating with respect to the field. 

The interactions among colloidal particles in dilute solutions with a low concentration of the 
magnetic phase are insignificant and the equilibrium susceptibility X0 grows linearly with increasing particle 
concentration n. For concentrated solutions, the dependence Xo(n) is nearly parabolic [12]. The rapid growth 
in susceptibility with an increase in particle concentration leads to a nonmonotone dependence K(n) [formula 
(3.5)]. For low concentrations, the torque increases on account of growth in X2, and for high concentrations 
it decreases due to a rapid growth in the denominator. The major role here is played by the demagnetizing 
field of the sample. The results in [1, 2, 9], which were obtained for the case where demagnetizing fields were 
ignored, coincide with our results in the limit X ---* 0. The demagnetizing field of the sample is taken into 
account in [3, 5], but the results for K differ from (3.5) in terms that are quadratic in X. In the case of 
dilute solutions (X < 1), the corresponding additional terms are not large, but at a high concentration of the 
magnetic phase they can lead to a two- to fivefold difference in the results. And this is indeed the case. 

The difference between the results of the present work and those of [3, 5] is, in our opinion, caused 
mainly by the initial equations and assumptions. In solving the problem in [3, 5], the relaxation equation 
was dropped and replaced by the assumption of constancy of the angle between the vectors H and M. 
This assumption agrees well with Eq. (2.3) when the magnetic field is polarized circularly, that is, when the 
samples have theshape  of a solid cylinder or a sphere. However, the magnetic fluid in the clearance between 
coaxial cylinders is characterized by an elliptic polarization of the magnetic field. In this case, a rigid-bond 
approximation for H and M and relaxation equation (1.3) yield different results. 

4. E x p e r i m e n t a l  Resu l t s  a n d  T h e i r  C o m p a r i s o n  w i t h  T heo ry .  Experiments were performed 
with glass cylinders according to the procedure in [3]. The outer cylinder was 33 mm in diameter and 200 mm 
high. The inner cylinder had the shape of an nreometer. It was suspended in the fluid so that only a thin 
capillary with marks on it extended above the surface. The cylinder diameter was 4.5 mm and the height 
h = 60 mm. In measurements of the moment of magnetic forces, the inner cylinder was suspended on a 
thin elastic strip of beryllium bronze. Colloidal magnetite solutions in liquid hydrocarbons were used as 
the working fluid. They were prepared under laboratory conditions using a standard chemical precipitation 
method. The viscosity of the solutions was measured with a rotation viscosimeter of the "Reotest-2" type. 
Dynamic susceptibility was measured by a mutual-inductance bridge in a weak (200 A/m) plane-polarized 
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TABLE 1 

H0, Ko, N/m 2 /to, N/m 2 
kA/m (experiment) (calculation) 

0.31 
0.61 
0.92 
1.23 
1.54 
1.84 
2.15 
2.46 
2.76 
3.07 
3.84 
4.61 

0.0044 
0.017 
O.04O 
0.071 
0.108 
0.155 
0.211 
0.278 
0.347 
0.436 
0.674 
0.960 

0.0041 
0.016 
0.037 
0.065 
0.102 
0.147 
0.200 
0.261 
0.330 
0.407 
0.636 
0.916 

field in accordance with the procedure of [13] at the frequencies that were used in the experiments with a 
rotating field. Crossed Helmholtz coils were used to create the rotating field. The rotating field intensity in 
different experiments was varied from 0 to 5 kA/m, and the rotation frequency, from 120 to 1,000 Hz. 

To make an additional check of the installation quality and to estimate the measurement error, control 
experiments were performed to measure the moment of forces acting on a magnetic fluid sample in the form 
of a solid cylinder. In these experiment, a round test tube with diameter d = 3.9 mm and height h = 61 mm 
was filled with a magnetic fluid. The moment of forces acting on the immobile cylinder can be expressed from 
(2.6), (3.2), and (3.3) for R, = 0 and v = 0: 

4/~o X2 Ho 2 
Ko = 4 + 4XI + X 2 = I~~ (4.1) 

where HI is the field intensity inside the fluid. Due to the demagnetizing factor, the magnitude of HI was, as 
a rule, several times smaller than that of the outer field H0. 

Typical results of the control experiments are presented in Table 1. The experiments were performed 
at a rotation frequency of 400 Hz for X1 = 5.13 and X2 = 0.437 (a highly concentrated fluid) and various 
field magnitudes. As could be expected, the moment of the magnetic forces grows with field intensity by a 
quadratic law. However, the value of K0 calculated from (4.1) is 5-8% smaller than the experimental value. 
This difference is mainly due to the edge effects, which are ignored in the theory. Obviously, their relative 
contribution is of the order of d/h and can be determined more precisely in experiments with samples of 
different lengths. 

The results of the control experiment that were obtained for H1 = 860 A / m  in the present work are 
presented in Fig. 1 (the dots). As is seen from Fig. 1, the torque grows with the d/h ratio by a nearly linear 
law (the line). The value of K0 that corresponds to the limit h ---* r is obtained by extrapolation of the 
averaged line to the coordinate axis and is 9% smaller than the value corresponding to h = 61 mm. If we now 
introduce a corresponding correction into the experimental data in Table 1, the values of K0 will be, on the 
average, only 3% smaller than the calculated values. This difference should be deemed insignificant, inasmuch 
as the measurement error of X2 from formula (4.1) is also within 3-5%. 

The results of experiments with immobile coaxial cylinders and their comparison with the calculation 
are presented in Fig. 2, wherein the curve corresponds to formula (3.5) and the dots to the experimental data. 
The experimentally measured moments of forces acting on the inner cylinder were, on the average, 8% larger 
than the calculated values, but after introducing corrections for the edge effects this difference decreased to 
3-4%. Similar results were obtained at rotation frequencies of the outer field of 120, 200, and 1,000 Hz. Thus, 
the situation is entirely similar analogous to that observed in experiments with a sample in the form of a solid 
cylinder. As for the formula for the torque obtained in [3, 5] for a circularly polarized field, it yields results 
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that are overstated by a factor of three. The agreement of this formula with experimental data, as noted in 
one experiment in [3], turned out to be accidental and was due to a procedural error in [3] in data processing. 

The angular rotation velocity of the inner cylinder with the immobile outer cylinder is presented in 
Fig. 3 for a sample with an effective viscosity 77 = 0.0172 Pa-sec and different intensities of the outer field. Here 
the curve corresponds to formula (3.4), whose accuracy proved to be far lower than the accuracy of formula 
(3.5) for the torque (the experimental data are shown by the dots). The calculated value of the cylinder's 
rotation velocity is 15-20% higher than the experimental one. 7L'hiz difference is, in our opinion, most likely 
caused by the fact that the concentrated magnetic fluids were weakly non-Newtonian. Indeed, their effective 
viscosity in the initial portion of the rheological curve can exceed significantly the viscosity measured by 
a standard viscosimeter [14]. It is precisely the flow with low shear velocities (not greater than 10 sec -1) 
that was realized in experiments with coaxial cylinders. This is two orders smaller than in the viscosimetric 
measurements. In addition, the relative deviation of the calculated value of fl from the experimental value 
decreases monotonically in our experiments with an increased velocity of the inner cylinder. This also can be 
regarded as a consequence of a decrease in the effective viscosity with an increased shear velocity. 

The amplitude of the outer field H0 did not exceed 4-5 k A / m  in our experiments. This limitation was 
due to the fact that the relaxation time in Eq. (2.3) could be considered constant only in weak fields: the 
Langevin parameter (~ = ~om H/kT ,  m is the magnetic moment of a single-domain colloidal particle, k is the 
Boltzmann constant, and T is the absolute temperature) must be small compared with unity [8]. For ~ >/ 1, 
linear Eq. (2.3) must be replaced by a more general one. For magnetite fluids, the magnetic moment m is on 
the order of 10 -19 A.m 2 and the condition ~ < 0.1 yields an estimate for the maximum field intensity inside 
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the fluid and for the limits of applicability of formulas (3.4) and (3.5): H1 < 1 kA/m. Although the outer field 
H0 can be higher by a factor of two to four, it nevertheless must not exceed a few kiloampers per meter. As 
is seen from Table 1 and Figs. 2 and 3, most of our experiments were performed under conditions that could 
be called the limiting allowable conditions within the assumptions made. With a further increase in the field, 
a comparison of the experimental and theoretical results would be improper. 

Thus, the results obtained in this work show that ferrohydrodynamic equations (2.1)-(2.4) with 
boundary condition (2.6) can be a good basis for calculating magnetic fluid flow in variable magnetic fields 
and for describing adequately the behavior of actual ferrocolloids. In the case of weak fields, one excludes 
from consideration the difficult-to-determine microscopic parameters related to single colloidal particles (the 
Langevin parameter and the magnetic moment relaxation time). The torque acting on a dielectric cylinder 
immersed in a magnetic fluid and the flow amplitude are expressed in terms of the imaginary and real parts 
of the dynamic susceptibility and agree satisfactorily with experimental values. A more precise comparison of 
the experimental and theoretical results requires much greater effort to develop a new procedure for measuring 
magnetic susceptibility and recording the theological curve at limiting low shear velocities. In the case of a 
magnetic field of arbitrary intensity, it is necessary to consider a nonlinear relaxation equation and take into 
account the possible nonpotentiality of volume magnetic forces, a wide spectrum of relaxation times, and 
their dependence on the field. An analytical solution of the problem in such a general formulation seems to 
be impossible. 

The authors express their gratitude to K. I. Morozov for discussing the results. This work was supported 
by the Russian Foundation for Fundamental Research (Grant 95-01-00408a). 
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